Indexed by:
Abstract:
现有的融合文本或邻居信息的知识补全模型忽略文本和邻居之间的相互作用,难以捕获与实体具有较强语义相关性的信息,加上基于卷积神经网络的模型未考虑实体中的关系相关信息,导致预测性能不佳.因此,文中结合文本信息和拓扑邻居信息,提出基于Triplet注意力的循环卷积神经网络模型.首先,通过语义匹配的方式,选取文本描述中与实体具有较强语义相关性的单词.再与拓扑邻居复合作为实体邻居,增强实体表示.然后,重塑实体的融合表示和关系表示.最后,利用Triplet注意力优化卷积输入,使卷积操作能提取实体中与关系相关的特征,提升模型性能.在多个公开数据集上的链路预测实验表明,文中模型性能较优.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
模式识别与人工智能
ISSN: 1003-6059
CN: 34-1089/TP
Year: 2022
Issue: 02
Volume: 35
Page: 116-129
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: