Indexed by:
Abstract:
For long underground box utility tunnels, post-tensioned precast concrete is often used. Between precast tunnel segments, sealed waterproof flexible joints are often specified. Fault displacement can lead to excessive deformation of the joints, which can lead to reduction in waterproofing due to diminished contact pressure between the sealant strip and the tunnel segment. This paper authenticates utilization of a finite element model for a prefabricated tunnel fault-crossing founded on ABAQUS software. In addition, material parameter selection, contact setting and boundary condition are reviewed. Analyzed under normal fault action are: the influence of fault displacement; buried depth; soil friction coefficient, and angle of crossing at the fault plane. In addition, distribution characteristics of the utility tunnel structure for vertical and longitudinal/horizontal relative displacement at segmented interface for the top and bottom slab are analyzed. It is found that the effect of increase in fault displacement on the splice joint deformation is significant, whereas the effects of changes in burial depth, pipe-soil friction coefficient and fault-crossing angle on the overall tunnel and joint deformations were not so significant.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
COMPUTERS AND CONCRETE
ISSN: 1598-8198
Year: 2022
Issue: 2
Volume: 29
Page: 69-79
4 . 1
JCR@2022
2 . 9 0 0
JCR@2023
ESI Discipline: COMPUTER SCIENCE;
ESI HC Threshold:61
JCR Journal Grade:1
CAS Journal Grade:3
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: