Indexed by:
Abstract:
Three-dimensional (3D) concrete printing (3DCP) technology attracts significant attention from research and industry. Moreover, adequate mechanical performance is one of the primary properties for materials, meeting the demand of structural safety using 3DCP technology. However, research on curing conditions as the significant influence factor of mechanical capacity is required to accelerate the practical application of 3DCP technology. This study aims to explore the impact of various steam curing conditions (heating rate, constant temperature time, and constant temperature) on the mechanical performance of printed concrete containing solid wastes. Moreover, the optimal steam curing conditions are obtained for compressive, tensile, and flexural properties in different directions. Subsequently, anisotropies in the mechanical properties of printed composites and interlayer bonding behaviors are investigated when various curing conditions are employed. The result shows that steam curing conditions and solid waste incorporation improves the interlayer bond for 3D printed cement-based composites.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
MATERIALS
ISSN: 1996-1944
Year: 2022
Issue: 8
Volume: 15
3 . 4
JCR@2022
3 . 1 0 0
JCR@2023
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:91
JCR Journal Grade:2
CAS Journal Grade:3
Cited Count:
WoS CC Cited Count: 8
SCOPUS Cited Count: 11
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: