Indexed by:
Abstract:
A large number of evolutionary algorithms have been introduced for multi-objective optimization problems in the past two decades. However, the compromise of convergence and diversity of the nondominated solutions is still the main difficult problem faced by optimization algorithms. To handle this problem, an efficient competitive mechanism based multi-objective differential evolution algorithm (CMODE) is designed in this work. In CMODE, the rank based on the non-dominated sorting and crowding distance is first adopted to create the leader set, which is utilized to lead the evolution of the differential evolution (DE) algorithm. Then, a competitive mechanism using the shift-based density estimation (SDE) strategy is employed to design a new mutation operation for producing offspring, where the SDE strategy is beneficial to balance convergence and diversity. Meanwhile, two variants of the CMODE using the angle competitive mechanism and the Euclidean distance competitive mechanism are proposed. The experimental results on three test suites show that the proposed CMODE performs better than six state-of-the-art multi-objective optimization algorithms on most of the twenty benchmark functions in terms of hypervolume and inverted generation distance. Furthermore, the proposed CMODE is applied to the feature selection problem. The comparison results on feature selection also demonstrate the efficiency of our proposed CMODE. (c) 2022 Elsevier B.V. All rights reserved.
Keyword:
Reprint 's Address:
Version:
Source :
KNOWLEDGE-BASED SYSTEMS
ISSN: 0950-7051
Year: 2022
Volume: 245
8 . 8
JCR@2022
7 . 2 0 0
JCR@2023
ESI Discipline: COMPUTER SCIENCE;
ESI HC Threshold:61
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 29
SCOPUS Cited Count: 32
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: