• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

Li, X. (Li, X..) [1] | Chen, X. C. (Chen, X. C..) [2] (Scholars:陈小超) | Jiang, W. T. (Jiang, W. T..) [3]

Indexed by:

EI SCIE

Abstract:

This paper is concerned with dynamic stability of graded graphene reinforced truncated conical shells under both periodic spinning speeds and axial loads considering thermal effects. The volume fraction of graphene platelets (GPLs) varies continuously along the shell's thickness direction, which induces the position-dependent effective material properties. Based upon Love's thin shell theory and Galerkin approach, the equations of motion of the conical shells are derived by considering thermal environment, both time-variable spinning speeds and axial loads. The method of multiple scales is adopted to obtain an analytical solution on the instability boundaries under combination parametric resonances. Then, comprehensive parametric studies are conducted focusing on the instability regions, natural frequencies and critical spinning speeds of the conical shell. The sensitivities of dynamic stabilities on the thermal expansion deformation, thermal conductivity and temperature-dependent material properties are also analyzed. Results show that the conical shell system would be always instability if parametric phase is not equal to integer multiple of pi. The GPL parameters, temperature variation, spinning speeds and axial loads have a significant influence on dynamic stability of the conical shell, and thermal conductivity and thermal expansion deformation are nonnegligible in the dynamic stability analysis.

Keyword:

Conical shells Dynamic stability Graphene Periodic spinning speed Thermal sensitivity Time-variable axial load

Community:

  • [ 1 ] [Li, X.]Sichuan Univ, Dept Mech & Engn, Chengdu 610065, Peoples R China
  • [ 2 ] [Jiang, W. T.]Sichuan Univ, Dept Mech & Engn, Chengdu 610065, Peoples R China
  • [ 3 ] [Chen, X. C.]Fuzhou Univ, Sch Mech Engn & Automat, Fuzhou 350108, Peoples R China

Reprint 's Address:

Show more details

Related Keywords:

Source :

ENGINEERING STRUCTURES

ISSN: 0141-0296

Year: 2022

Volume: 256

5 . 5

JCR@2022

5 . 6 0 0

JCR@2023

ESI Discipline: ENGINEERING;

ESI HC Threshold:66

JCR Journal Grade:1

CAS Journal Grade:2

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 1

Online/Total:365/10760995
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1