Indexed by:
Abstract:
In this study, new organic-inorganic g-C3N4/CoAl-LDH nanocomposites were prepared and introduced to fabricate photocatalytic cement mortars by internal mixing, coating, and spraying. The photocatalytic depollution of both g-C3N4/CoAl-LDH and cement mortars was assessed by NOx degradation reaction under UV-visible light irradiation. The study results suggested that the degradation efficiency of g-C3N4/CoAl-LDH nanocomposites improved with an increase in g-C3N4 content. The g-C3N4/CoAl-LDH1.5 nanocomposite displayed the highest NOx degradation capacity, which was about 1.23 and 3.21 times that of pure g-C3N4 and CoAl-LDH, respectively. The photocatalytic cement mortars which were all fabricated using different approaches could effectively degrade the target pollutants and exhibited significant compatibility between g-C3N4/CoAl-LDH and cementitious substrate. Among them, the coated mortars showed strong resistance to laboratory-simulated wearing and abrasion with a small decrease in degradation rate.
Keyword:
Reprint 's Address:
Email:
Source :
CATALYSTS
ISSN: 2073-4344
Year: 2022
Issue: 4
Volume: 12
3 . 9
JCR@2022
3 . 8 0 0
JCR@2023
ESI Discipline: CHEMISTRY;
ESI HC Threshold:74
JCR Journal Grade:2
CAS Journal Grade:4
Cited Count:
WoS CC Cited Count: 16
SCOPUS Cited Count: 9
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3