Indexed by:
Abstract:
针对单目相机采集室外图像易受环境光照影响、尺度存在不确定性的缺点,以及利用神经网络进行位姿估计不准确的问题,提出一种基于卷积神经网络(CNN)与扩展卡尔曼滤波(EKF)的单目视觉惯性里程计.采用神经网络取代传统里程计中基于几何约束的视觉前端,将单目相机输出的估计值作为测量更新,并通过神经网络优化EKF的误差协方差.利用EKF融合CNN输出的单目相机位姿和惯性测量单元(IMU)数据,优化CNN的位姿估计,补偿相机尺度信息与IMU累计误差,实现无人系统运动位姿的更新和估计.相比于使用单目图像的深度学习算法Depth-VO-Feat,所提算法融合单目图像和IMU数据进行位姿估计,KITTI数据集中09序列的平动、转动误差分别减少45.4%、47.8%,10序列的平动、转动误差分别减少68.1%、43.4%.实验结果表明所提算法能进行更准确的位姿估计,验证了算法的准确性和可行性.
Keyword:
Reprint 's Address:
Email:
Source :
仪器仪表学报
ISSN: 0254-3087
Year: 2021
Issue: 10
Volume: 42
Page: 188-198
Cited Count:
SCOPUS Cited Count: 3
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 18
Affiliated Colleges: