Abstract:
短时交通流预测是智能交通管理的重要依据。为了提高短时交通流预测的精度,从交通流内在的稳态特征和动态特征着手,提出一种基于巴特沃兹滤波(Butterworth filter, BF),结合支持向量回归(support vector regression, SVR)算法和门控循环单元(gated recurrent unit, GRU)模型的预测方法,即BF-SVR-GRU模型。该方法先对交通流标准化处理,以加快后续模型计算的速度。通过设置适当阈值,利用巴特沃兹滤波将交通流信息分解为稳态分量和动态分量:稳态分量反映交通流总体变化趋势,动态分量反映突发因素(如交通事故、天气影响等)对交通流的影响。利...
Keyword:
Reprint 's Address:
Email:
Source :
贵州大学学报(自然科学版)
Year: 2022
Issue: 02
Volume: 39
Page: 111-118
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: