Indexed by:
Abstract:
在深度学习技术的发展驱动下,智慧应用场景对文本识别任务提出了更高的要求。现有方法更加侧重构建强大的视觉特征提取网络,忽略了文本序列特征的提取能力。针对该问题,提出了一种基于层次自注意力的场景文本识别网络。通过融合卷积和自注意力可以建立并增强文本序列信息与视觉感知信息间的联系。由于视觉特征和序列特征在全局空间中的充分交互,有效地减小了复杂背景噪声对识别精度的影响,实现了对规则和不规则场景文本的鲁棒性预测。实验结果表明,所提方法在各数据集上均表现出竞争力。尤其是在CUTE数据集上可以实现81.4%,6.24 ms的最佳精度和速度,具备一定的应用潜力。
Keyword:
Reprint 's Address:
Email:
Version:
Source :
无线电工程
ISSN: 1003-3106
CN: 13-1097/TN
Year: 2022
Issue: 01
Volume: 52
Page: 70-75
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 10
Affiliated Colleges: