Indexed by:
Abstract:
Tidal flats are important transitional zones between terrestrial and marine ecosystems and have complicated ecological processes and essential ecosystem services. Tidal flats are highly dynamic under the influences of land-sea interactions and anthropogenic activities. Limited by the accessibility, it is difficult to map the tidal flat using traditional survey. To solve the difficulty in obtaining tidal flat elevation data, a tidal flat elevation inversion model suitable for large-scale with high accuracy is needed. In this study, we proposed an algorithm incorporating tidal submergence and time-series Remote Sensing (RS) data to map the topography of tidal flats. We used Chongming Dongtan as an example and further extended the results to the whole Yangtze Estuary. Firstly, the K-means++ clustering was employed to extract the inundation extent of tidal. Then, the frequency of tidal inundation of each pixel was calculated from the time series RS data. Finally, the tidal flat topography was retrieved based on the regional tidal frequency. All available Sentinel-2 and Landsat-8 images from 2016 to 2020 were used to build the time-series dynamic of tidal flats to map the topography. Verified by the in-situ data, the results showed that the total accuracy and F1-score of the inundation extent extraction of the tidal flats were 97.73% and 0.98, respectively. The average absolute error of elevation inversion was 0.15 m. The accuracy of tidal flat elevation was positively correlated with the number of available images. The total area of tidal flats was 346.93 km 2 with an elevation range of 1.00~3.84 m. The tidal flats in the Yangtze Estuary were mainly distributed in Chongming Dongtan, Jiuduansha, Hengsha Dongtan, Nanhui Biantan, and Tuanjiesha. Among them, Nanhui beach had the largest area (107.44 km 2), while Chongming east beach had the largest elevation difference (2.84 m). The distribution status of tidal flat was mainly affected by sediment hydrodynamics, vegetation, and human engineering activities. Compared with the existing dataset, our results showed a more robust capacity in the inundation extent extraction of tidal flats. With the increasing number of effective observations and tidal level information from time-series RS images in coastal areas, the extraction accuracy of tidal flat information could be further improved. The proposed algorithm has a great potential in rapid mapping of tidal flat topography and is of great significance for the dynamic monitoring and management of tidal flat resources. © 2022, Science Press. All right reserved.
Keyword:
Reprint 's Address:
Email:
Source :
Journal of Geo-Information Science
ISSN: 1560-8999
CN: 11-5809/P
Year: 2022
Issue: 3
Volume: 24
Page: 583-596
Cited Count:
SCOPUS Cited Count: 4
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 5
Affiliated Colleges: