• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

Lin, Bilin (Lin, Bilin.) [1] | Wang, Huaiyuan (Wang, Huaiyuan.) [2] | Zhang, Yang (Zhang, Yang.) [3] | Wen, Buying (Wen, Buying.) [4]

Indexed by:

EI

Abstract:

In case of faults or severe disturbances, the power system will enter an emergency operation state. After the system instability is detected, oscillation and blackout will occur in the system if effective control measures are not taken in time. Generator tripping control (GTC) is the most effective emergency control measure. In view of the mismatch between the traditional GTC algorithm and the transient stability assessment method based on machine learning, a new real-time GTC method is needed. In this paper, a three-part control framework is designed for the GTC problem. The control agent is endowed with decision-making ability by interacting with the simulation environment in the offline pre-learning part. Then the trained agent is transplanted to the online application which can help system operators make decisions. Meanwhile, the agent is updated with real data to be better adapted to the actual system in the online learning part. A deep reinforcement learning algorithm, deep deterministic policy gradient (DDPG) is employed to train the control agent in this framework. A modified DDPG algorithm and the corresponding reward function are designed for the GTC problem. Convolution neural network (CNN) is added to the DDPG network, by which the training time of the agent is shortened and the generalization ability of the algorithm is improved. Trained with simulation data and real system experience, the control agent can determine control strategies timely according to the system operating conditions. Simulation results on the IEEE-39 bus system and the realistic regional power system of Eastern China show the effectiveness, generalizability, and timeliness of the decision algorithm. © 2022 Elsevier Ltd

Keyword:

Convolution Convolutional neural networks Decision making Deep neural networks Electric power system control Learning algorithms Reinforcement learning System stability

Community:

  • [ 1 ] [Lin, Bilin]Fujian Key Laboratory of New Energy Generation and Power Conversion, College of Electrical Engineering and Automation, Fuzhou University, Fuzhou; 350108, China
  • [ 2 ] [Wang, Huaiyuan]Fujian Key Laboratory of New Energy Generation and Power Conversion, College of Electrical Engineering and Automation, Fuzhou University, Fuzhou; 350108, China
  • [ 3 ] [Zhang, Yang]Fujian Key Laboratory of New Energy Generation and Power Conversion, College of Electrical Engineering and Automation, Fuzhou University, Fuzhou; 350108, China
  • [ 4 ] [Wen, Buying]Fujian Key Laboratory of New Energy Generation and Power Conversion, College of Electrical Engineering and Automation, Fuzhou University, Fuzhou; 350108, China

Reprint 's Address:

Email:

Show more details

Related Keywords:

Related Article:

Source :

International Journal of Electrical Power and Energy Systems

ISSN: 0142-0615

Year: 2022

Volume: 141

5 . 2

JCR@2022

5 . 0 0 0

JCR@2023

ESI HC Threshold:66

JCR Journal Grade:1

CAS Journal Grade:2

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count: 9

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 4

Affiliated Colleges:

Online/Total:220/9649542
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1