Indexed by:
Abstract:
We demonstrate a broadband near-100%-efficiency ultrathin metasurface operating at microwave and millimeter-wave frequencies. We develop and employ two orthogonally polarized metallic gratings to form a Fabry-Perot cavity and incorporate a subwavelength metallic double-split-ring resonator at the center of each unit cell. It allows arbitrary amplitude-phase combinations with no coupling between amplitude and phase or between transmitted and reflected waves, leading to the design of an ultrathin but highly efficient broadband metasurface with multiple functionalities. Furthermore, the proposed metasurface can generate diffractive beams with different orders and vortex beams with different orbital angular momentum (OAM) modes in reflection and transmission spaces simultaneously. Both numerical and experimental results verify that the proposed metasurface has superior performance to its counterparts that are based solely on phase control. The proposed metasurface presents a lightweight, low-cost, and easily deployable flat device for microwave and millimeter-wave applications.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES
ISSN: 0018-9480
Year: 2021
Issue: 1
Volume: 70
Page: 254-263
4 . 3 8 1
JCR@2021
4 . 1 0 0
JCR@2023
ESI Discipline: ENGINEERING;
ESI HC Threshold:105
JCR Journal Grade:2
CAS Journal Grade:3
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 33
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: