Indexed by:
Abstract:
Synthetic aperture radar (SAR) image ship detection has important applications in marine surveillance. There are two limitations when applying advanced detection methods naively for SAR ship detection. First, most detectors construct the model as an encoder and rely on the feature pyramid network (FPN) head for accurate prediction, which may lead to high computational costs. Second, the background noises in the ground truth (annotated as rectangular bounding boxes) of angular ships bring difficulties for model training. To meet these challenges, we propose an efficient encoder-decoder network with estimated direction for ship detection in SAR images. First, we present an anchor-free encoder-decoder model that can efficiently extract multiple-level features. Second, we formulate ship detection as a multitask learning problem, including a bounding box prediction and a ship direction regression. The estimated ship direction can weakly supervise and benefit ship detection. Furthermore, we develop a center-weighted labeling method for overlapped annotations. Comprehensive experiments on SAR-Ship-Detection and SSDD datasets show that our method achieves state-of-the-art performance with a high running speed.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS
ISSN: 1545-598X
Year: 2022
Volume: 19
4 . 8
JCR@2022
4 . 0 0 0
JCR@2023
ESI Discipline: GEOSCIENCES;
ESI HC Threshold:51
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 6
SCOPUS Cited Count: 6
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: