Indexed by:
Abstract:
本发明提出一种基于单张图像超分辨率的轻量级网络模型及处理方法,通过低分辨率图像有效地重建出质量较高的超分辨率图像,同时算法的重建效率高,能够有效地平衡重建质量和重建效率,不仅能重建出高分辨率图像,而且重建速度快,且该算法泛化性好,可以应用于多种场景的图像超分辨率问题,可达到实际工业需求。其主要包括特征提取部分、非线性映射部分、重建模型和插值模块。特征提取部分提取出低分辨率图像的浅层特征,将浅层特征输入非线性映射部分进行更充分的学习得到高级特征,最后将高级特征输入到重建模型和插值模块,并引入双线性插值得到最后的高分辨率图像。
Keyword:
Reprint 's Address:
Email:
Patent Info :
Type: 发明申请
Patent No.: CN202111048332.3
Filing Date: 2021-09-08
Publication Date: 2023-10-13 00:00:00
Pub. No.: CN113781304B
公开国别: 中国
Applicants: 福州大学
Legal Status: 授权
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: