Indexed by:
Abstract:
本发明提出基于弱监督学习的数据增强网络的细粒度车辆识别方法,包括以下步骤;步骤S1:把细粒度车型数据集将其输入数据增强网络的主干网络,以获得车辆注意力图并计算部分注意力特征;步骤S2:进行图片数据增强,生成增强图像以扩充训练样本;步骤S3:计算原始图像和增强图像损失以及特征中心损失,以得到网络整体损失函数;步骤S4:过滤背景噪声,生成定位图输入数据增强网络,与原始图像获得的概率求均值得到最终细粒度车型预测结果;步骤S5:构建与颜色、角度、粗粒度车型相关的的多标签向量,将图片输入网络训练获得多标签分类器。输入汽车定位图得到汽车多标签预测结果;本发明能够准确有效地经图像识别来获取图片中的多种车辆信息。
Keyword:
Reprint 's Address:
Email:
Patent Info :
Type: 发明申请
Patent No.: CN202011142413.5
Filing Date: 2020-10-22
Publication Date: 2023-02-21 00:00:00
Pub. No.: CN112257601B
公开国别: 中国
Applicants: 福州大学
Legal Status: 授权
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: