Indexed by:
Abstract:
The existing information diffusion prediction methods model the cascade sequences and topological structure independently. And thus it is difficult to learn the interactive expression of cascade temporal and structural features in the embedded space, and the portrayal of dynamic evolution of information diffusion is insufficient. Aiming at this problem, an information diffusion prediction method based on cascade spatial-temporal feature is proposed. Based on the social network and diffusion paths, the heterogeneous graphs are constructed. The structural context of nodes of heterogeneous graphs and social network is learned by graph neural network, while the cascade temporal feature is captured by gated recurrent unit. To make microscopic information prediction, the cascade spatial-temporal feature is constructed by fusing structure context and temporal feature. The experimental results on Twitter and Memes datasets demonstrate that the performance of the proposed method is improved to a certain extent. © 2021, Science Press. All right reserved.
Keyword:
Reprint 's Address:
Email:
Source :
Pattern Recognition and Artificial Intelligence
ISSN: 1003-6059
Year: 2021
Issue: 11
Volume: 34
Page: 969-978
Cited Count:
SCOPUS Cited Count: 2
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: