Indexed by:
Abstract:
针对经验模态分解(empirical mode decomposition,EMD)方法存在信噪分离不准确的缺陷,以及独立分量分析(independent component analysis,ICA)存在不确定性的问题,提出了一种改进完备集成经验模态分解(improved complete ensemble empirical mode decomposition, ICEEMD)、ICA与最小失真准则(minimal distortion principle,MDP)相结合进行变形数据去噪的方法。首先,使用ICEEMD方法对变形监测数据进行有效分解,并以此构建虚拟噪声信号;其次,对虚拟噪声...
Keyword:
Reprint 's Address:
Email:
Source :
武汉大学学报(信息科学版)
ISSN: 1671-8860
CN: 42-1676/TN
Year: 2021
Issue: 11
Volume: 46
Page: 1658-1665
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 9
Affiliated Colleges: