Indexed by:
Abstract:
地震预警震级测定是地震预警系统最重要也是最困难的部分之一.本文提出了基于卷积神经网络的地震预警震级测定方法,将震级测定问题转化为震级分类问题,即将ML>2.0的震级分成20个不同等级类别处理.收集了福建台网2012-2019年期间记录到福建、台湾海峡及台湾共1928个地震作为研究资料,经过台站记录截取、大震样本增强、标签制作、质量筛选等预处理共得到14644条三分向地震样本记录;构建了3 s波形输入的卷积神经网络震级预测模型,并用2012-2018年震例对模型进行训练,用2019年震例对模型进行测试.结果 表明,单台震级偏差有85.6%可控制在±0.3以内,前三台平均的震级偏差有91.8%可控制在±0.3以内,其中震级较大偏差的事件多为缺乏历史样本.相较于传统方法,该模型测定的震级值更加稳定可靠,可为解决地震预警震级测定这一挑战性难题提供新的技术手段.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
地球物理学报
ISSN: 0001-5733
Year: 2021
Issue: 10
Volume: 64
Page: 3600-3611
1 . 0 5 9
JCR@2021
1 . 6 0 0
JCR@2023
ESI Discipline: GEOSCIENCES;
ESI HC Threshold:77
JCR Journal Grade:4
CAS Journal Grade:4
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: