Abstract:
在施工过程中塔式起重机的事故发生得越来越频繁,为了在安全检测中及时发现塔式起重机因各种因素产生的裂缝从而降低事故的发生率,提出一种基于改进YOLO V3的塔式起重机裂缝检测方法.针对塔式起重机裂缝检测的特点对YOLO V3算法进行改进,利用K-means聚类方法对目标框聚类;根据识别目标对象特点改进原YOLO V3的损失函数;以YOLO V3的网络结构为基础,轻量化网络结构,将3个检测尺度改为2个检测尺度.测试实验结果表明,在对塔式起重机裂缝检测的任务中,均值平均精度高达85.63%,检测速度提高了10.53%,达到42 f/s,满足塔式起重机裂缝检测实时性和准确性的需求,能够进行有效安全检测.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
贵州大学学报(自然科学版)
ISSN: 1000-5269
Year: 2021
Issue: 3
Volume: 38
Page: 76-82
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 5
Affiliated Colleges: