Abstract:
在以往的地铁列车自动驾驶研究中,驾驶数据通常通过仿真生成单条运行曲线、对人工驾驶数据进行采样得到,不但实现方式比较复杂,而且效率较低、通用性不强。受AlphaZero系统启发,创新性地提出了人工生成虚拟地铁运行数据的思想。首先,根据一种五段式地铁列车速度曲线的运行方法,实现了虚拟数据的计算;然后,结合人类专家的经验设置牵引制动的区间分级、实际运行速度的分级、车站间距及变速距离分级等实际参数,缩小曲线数据范围,使其合理化;最后,通过Python编程得到大量数据,保存为数据集,绘制地铁列车运行时间频次分布图。通过观测发现,该虚拟数据覆盖各种运行时间,比传统数据更有利于地铁列车智能驾驶算法的研究。
Keyword:
Reprint 's Address:
Email:
Version:
Source :
智能科学与技术学报
ISSN: 2096-6652
CN: 10-1604/TP
Year: 2021
Issue: 02
Volume: 3
Page: 179-184
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: