Indexed by:
Abstract:
在竹条表面缺陷检测中,竹条表面缺陷形状各异,成像环境脏乱,现有基于卷积神经网络(CNN)的目标检测模型面对这样特定的数据时并不能很好地发挥神经网络的优势;而且竹条来源复杂且有其他条件限制,因此没办法采集所有类型的数据,导致竹条表面缺陷数据量少到CNN不能充分学习。针对这些问题,提出一种专门针对竹条表面缺陷的检测网络。该网络的基础框架为CenterNet,而且为提高CenterNet在较少的竹条表面缺陷数据中的检测性能,设计了一种基于从零开始训练的辅助检测模块:在网络开始训练时,冻结采用预训练模型的CenterNet部分,并针对竹条的缺陷特点从零开始训练辅助检测模块;待辅助检测模块损失趋于稳定时...
Keyword:
Reprint 's Address:
Email:
Source :
计算机应用
ISSN: 1001-9081
CN: 51-1307/TP
Year: 2021
Issue: 07
Volume: 41
Page: 1933-1938
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: