Indexed by:
Abstract:
相较于传统烟火、烟雾检测,基于卷积神经网络算法的烟火检测具有更高检测精度和效率,提出基于改进YOLOv3算法的烟火识别方法,应用高斯参数设计损失函数并建立YOLOv3边界框模型,实现边界框置信度计算以减少负样本.为充分利用图像局部特征信息,对网络结构进行改进,以实际烟火现场图片为待检对象,完成烟火识别过程计算.结果表明,与基础YOLOv3对比,本研究提出的改进YOLOv3算法平均精度提高5.5%,该方法有助于提升智能烟火预警、人员救助和险情跟踪作业水平,最终提升事故灾害应急和管理能力.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
福州大学学报(自然科学版)
ISSN: 1000-2243
CN: 35-1337/N
Year: 2021
Issue: 03
Volume: 49
Page: 309-315
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 5
Affiliated Colleges: