Indexed by:
Abstract:
针对在设计电能质量扰动(Power Quality Disturbance,PQD)分类器时人工选取特征过程繁琐并且不够精确的问题,提出一种基于格拉姆角场(Gramian Angular Field,GAF)和卷积神经网络(Convolutional Neural Network,CNN)的PQD分类方法.首先将一维PQD信号映射为二维图像,接着在已有的神经网络基础上构造适用于PQD分类的网络框架.最后将二维图像作为输入,CNN将自动从海量的扰动样本中提取特征并加以分类.仿真结果表明该方法在噪声数据中具有良好的分类性能,是一种行之有效的PQD分类方法.
Reprint 's Address:
Version:
Source :
电力系统保护与控制
ISSN: 1674-3415
CN: 41-1401/TM
Year: 2021
Issue: 11
Volume: 49
Page: 97-104
Affiliated Colleges:
查看更多>>操作日志
管理员 2025-04-11 01:18:50 更新被引
夏诗琪 2024-05-07 13:58:31 数据初审
管理员 2024-05-02 13:04:14 从数据648378升级为主数据,原主数据645961降级为从数据
管理员 2022-03-31 15:31:42 追加