Indexed by:
Abstract:
Graphitic carbon nitride (g-C3N4) has been shown as a promising visible-light photosensitizer for photodynamic therapy (PDT) application. Nevertheless, its therapeutic efficiency is limited by the low efficiency of visible-light utilization. To overcome this issue, 3-amino-1,2,4-triazole-derived graphitic carbon nitride nanosheets (g-C3N5 NSs) are prepared for PDT application. The addition of nitrogen-rich triazole group into the g-C3N4 motif significantly makes the light absorption of g-C3N5 NSs red-shift with the band gap down to 1.95 eV, corresponding to a absorption edge at a wavelength of 636 nm. g-C3N5 NSs generate superoxide anion radicals (O2•–) and singlet oxygen (1O2) under the irradiation of a low-intensity white light emitting diode. Owing to the high efficiency of visible-light utilization, g-C3N5 NSs show about 9.5 fold photocatalytic activity of g-C3N4 NSs. In vitro anticancer studies based on the results of CCK-8 assay, Calcein-AM/PI cell-survival assay and photo-induced intracellular ROS level analysis in living HeLa cells demonstrate the potential of g-C3N5 NSs as a low-toxic and biocompatible high-efficient photosensitizer for PDT. © 2020 Elsevier B.V.
Keyword:
Reprint 's Address:
Email:
Source :
Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy
ISSN: 1386-1425
Year: 2021
Volume: 250
4 . 8 3 1
JCR@2021
4 . 3 0 0
JCR@2023
ESI HC Threshold:117
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
SCOPUS Cited Count: 15
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: