Indexed by:
Abstract:
Photocatalytic hydrogen production is considered as an ideal approach to solve global energy crisis and environmental pollution. Graphitic carbon nitride (g-C3N4) has received extensive consideration due to its facile synthesis, stable physicochemical properties, and easy functionalization. However, the pristine g-C3N4 usually shows unsatisfactory photocatalytic activity due to the limited separation efficiency of photogenerated charge carriers. Generally, introducing semiconductors or co-catalysts to construct g–C3N4–based heterojunction photocatalysts is recognized as an effective method to solve this bottleneck. In this review, the advantages and characteristics of various types of g–C3N4–based heterojunction are analyzed. Subsequently, the recent progress of highly efficient g–C3N4–based heterojunction photocatalysts in the field of photocatalytic water splitting is emphatically introduced. Finally, a vision of future perspectives and challenges of g–C3N4–based heterojunction photocatalysts in hydrogen production are presented. Predictably, this timely review will provide valuable reference for the design of efficient heterojunctions towards photocatalytic water splitting and other photoredox reactions. © 2021 The Author(s)
Keyword:
Reprint 's Address:
Email:
Source :
International Journal of Hydrogen Energy
ISSN: 0360-3199
Year: 2021
Issue: 75
Volume: 46
Page: 37242-37267
7 . 1 3 9
JCR@2021
8 . 1 0 0
JCR@2023
ESI HC Threshold:105
JCR Journal Grade:2
CAS Journal Grade:3
Cited Count:
SCOPUS Cited Count: 40
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: