Indexed by:
Abstract:
With the rapid development of propane dehydrogenation for the production of propylene, it is urgent to develop a new generation of high-performance catalysts. In this review, recent progresses of supported Pt nanoclusters, metal oxides, and carbon materials in propane dehydrogenation are discussed. The dispersion and stability of Pt nanoclusters are the key factors affecting the dehydrogenation performance. The catalytic activity of Pt nanoclusters can be improved by developing new synthesis techniques and adjusting the properties of supports. The unsaturated metal cations in metal oxides are the active sites for dehydrogenation reaction. The catalytic activity can be significantly improved by adjusting the properties of supports, optimizing the preparation methods, and structural doping. The oxygen-containing functional groups in carbon materials are considered to be active sites for propane dehydrogenation reaction. The catalytic performance of carbon materials can be enhanced by tuning the surface area, pore property, and the number of oxygen-containing functional groups. Future studies should be focused on improving the anti-resistant ability of Pt nanoclusters, enhancing the intrinsic activity of oxides, and increasing the thermal-stability of carbon materials, which leads to breakthroughs in the development of propane dehydrogenation catalyst. © 2021, Chemical Industry Press Co., Ltd. All right reserved.
Keyword:
Reprint 's Address:
Email:
Source :
Chemical Industry and Engineering Progress
ISSN: 1000-6613
Year: 2021
Issue: 4
Volume: 40
Page: 1893-1916
Cited Count:
SCOPUS Cited Count: 7
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: