Indexed by:
Abstract:
Effects of pressure on lattice parameters, electronic, thermodynamic and mechanical properties of the fully ordered Ti2AlNb orthorhombic phase were studied using first-principles calculations based on density functional theory (DFT). The bonding nature for ordering orthorhombic Ti2AlNb was revealed quantitatively through the electronic structure analyzing. The external pressures play limited roles in the elastic anisotropy of the alloy due to the outstanding dynamical and mechanical stabilities under pressure. However, the shear modulus of O phase manifests anisotropic, where {010} shear planes are the easiest planes to cleave among the principal planes under all pressures. The heat capacities, volume expansions and thermal expansion coefficients were calculated using the quasi-harmonic approximation model based on the phonon dispersion curves. Meanwhile, the bulk modulus, Young's modulus, shear modulus and the hardness are promptly enhanced under pressure. The predicted results give hints to design Ti2AlNb-based alloy as high-pressure applications.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
RARE METALS
ISSN: 1001-0521
CN: 11-2112/TF
Year: 2021
Issue: 10
Volume: 40
Page: 2964-2974
6 . 3 1 8
JCR@2021
9 . 6 0 0
JCR@2023
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:142
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 20
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: