Indexed by:
Abstract:
The efficient nondestructive assessment of quality and homogeneity for two-dimensional (2D) MoS2 is critically important to advance their practical applications. Here, we presented a rapid and large-area assessment method for visually evaluating the quality and uniformity of chemical vapor deposition (CVD)-grown MoS2 monolayers simply with conventional optical microscopes. This was achieved through one-pot adsorbing abundant sulfur particles selectively onto as-grown poorer-quality MoS2 monolayers in a CVD system without any additional treatment. We further revealed that this favorable adsorption of sulfur particles on MoS2 originated from their intrinsic higher-density sulfur vacancies. Based on unadsorbed WS, monolayers, superior performance field effect transistors with a mobility of similar to 49 cm(2) V-1 s(-1) were constructed. Importantly, the assessment approach was noninvasive due to the all-vapor-phase and moderate adsorption-desorption process. Our work offers a new route for the performance and yield optimization of devices by quality assessment of 2D semiconductors prior to device fabrication.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
NANO LETTERS
ISSN: 1530-6984
Year: 2021
Issue: 3
Volume: 21
Page: 1260-1266
1 2 . 2 6 2
JCR@2021
9 . 6 0 0
JCR@2023
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:142
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 10
SCOPUS Cited Count: 10
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1