Indexed by:
Abstract:
Interfaces in perovskite and organic solar cells play a central role in advancing efficiency and prolong device durability. They improve charge transport/transfer from the absorber layer to the collecting electrodes, while also blocking the opposite charge carriers, minimize voltage losses by suppressing charge recombination. and may act as buffer/protective layers and nanomorphology regulators for the absorber layer. One such interface is formed by the hole transport layer (HTL) and the organic/perovskite absorber. These HTLs typically consist of organic semiconductors, which, although are solution processable at low temperatures and allow perfect energy-level alignment with the absorber layer and therefore efficient charge collection, are prone to degradation in ambient conditions and under continuous light exposure. In a quest for robust alternatives, inorganic materials such as metal oxides, graphene oxide, bronzes, copper thiocyanate, and transition metal dichalcogenides are actively investigated. However, their hole extraction capability is inferior compared with organic semiconductors as they possess specific energetics leading to significant charge extraction barriers and moderate charge collection. To achieve further advancements in their hole transporting capabilities, strongly interconnecting knowledge of their synthesis, electronic properties, and device performance metrics is required.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
SOLAR RRL
ISSN: 2367-198X
Year: 2020
Issue: 1
Volume: 5
8 . 5 8 2
JCR@2020
6 . 0 0 0
JCR@2023
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:196
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
SCOPUS Cited Count: 32
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: