Indexed by:
Abstract:
Semantic segmentation is one of the fundamental tasks in understanding and applying urban scene point clouds. Recently, deep learning has been introduced to the field of point cloud processing. However, compared to images that are characterized by their regular data structure, a point cloud is a set of unordered points, which makes semantic segmentation a challenge. Consequently, the existing deep learning methods for semantic segmentation of point cloud achieve less success than those applied to images. In this article, we propose a novel method for urban scene point cloud semantic segmentation using deep learning. First, we use homogeneous supervoxels to reorganize raw point clouds to effectively reduce the computational complexity and improve the nonuniform distribution. Then, we use supervoxels as basic processing units, which can further expand receptive fields to obtain more descriptive contexts. Next, a sparse autoencoder (SAE) is presented for feature embedding representations of the supervoxels. Subsequently, we propose a regional relation feature reasoning module (RRFRM) inspired by relation reasoning network and design a multiscale regional relation feature segmentation network (MS-RRFSegNet) based on the RRFRM to semantically label supervoxels. Finally, the supervoxel-level inferences are transformed into point-level fine-grained predictions. The proposed framework is evaluated in two open benchmarks (Paris-Lille-3D and Semantic3D). The evaluation results show that the proposed method achieves competitive overall performance and outperforms other related approaches in several object categories. An implementation of our method is available at: https://github.com/HiphonL/MS_RRFSegNet.
Keyword:
Reprint 's Address:
Email:
Source :
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
ISSN: 0196-2892
Year: 2020
Issue: 12
Volume: 58
Page: 8301-8315
5 . 6
JCR@2020
7 . 5 0 0
JCR@2023
ESI Discipline: GEOSCIENCES;
ESI HC Threshold:115
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 48
SCOPUS Cited Count: 57
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 4