Indexed by:
Abstract:
This paper presents a fault tolerant control (FTC) design for the actuator faults in a variable cycle engine (VCE). Ensured by the multiple variable geometries structure of VCE, the design is realized by distributing the control effort among the unfaulty actuators with the "functional redundancy" idea. The FTC design consists of two parts: the fault reconstruction part and the fault tolerant control part, which use a sliding mode observer (SMO) and a sliding mode control (SMC) scheme respectively. Considering the inaccuracy of the fault reconstruction result, the proposed design requires only inaccurate fault information. The stability of the closed-loop control system is proved and the existence condition for the proposed control law is analyzed. This work also reveals its relation to the sliding mode control allocation design and the adaptive SMC design. An application case is then studied for tolerating the loss of effectiveness fault of the nozzle area actuator. Results show that the FTC design is able to tolerate the fault and achieves the same control goal as in the fault-free situation. Finally, a hardware-in-the-loop test is carried out to verify the design in a real-time distributed control system, which demonstrates its use from the engineering perspective.
Keyword:
Reprint 's Address:
Email:
Source :
ACTUATORS
ISSN: 2076-0825
Year: 2021
Issue: 2
Volume: 10
2 . 5 2 3
JCR@2021
2 . 2 0 0
JCR@2023
ESI Discipline: ENGINEERING;
ESI HC Threshold:105
JCR Journal Grade:2
CAS Journal Grade:4
Cited Count:
SCOPUS Cited Count: 4
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: