Indexed by:
Abstract:
In this work, ZnTi-LDH nanosheets with several monolayer thickness were prepared as photocatalysts for the aerobic oxidation of aniline to yield nitrosobenzene under visible light irradiation. UV-vis DRS, in situ FTIR and XPS results jointly revealed that aniline molecules were efficiently chemisorbed and activated on ZnTi-LDH to form surface coordination active species, improving visible light absorption and inducing the photocatalytic reaction. The surface OH groups on ZnTi-LDH as the Bronsted base sites facilitated the reductive deprotonation of aniline to form the anilino anion, which was a key step in promoting aniline oxidation. ESR and XPS data suggested that oxygen vacancies (OVs) were formed due to the interaction between exposed OH groups and aniline molecules. The OVs, as the centers to capture photoelectrons, achieve the reduction of oxygen molecules to O-2(-) radicals, which further oxidize anilino species to produce nitrosobenzene. Finally, a possible mechanism was proposed to reveal the photocatalytic process based on the surface coordination activation theory.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
CATALYSIS SCIENCE & TECHNOLOGY
ISSN: 2044-4753
Year: 2021
Issue: 1
Volume: 11
Page: 162-170
6 . 1 7 7
JCR@2021
4 . 4 0 0
JCR@2023
ESI Discipline: CHEMISTRY;
ESI HC Threshold:117
JCR Journal Grade:2
CAS Journal Grade:3
Cited Count:
WoS CC Cited Count: 25
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: