Indexed by:
Abstract:
Mixed-cell-height circuits have prevailed in advanced technology to address various design requirements. Along with device scaling, complex minimum-implant-area (MIA) constraints arise as an emerging challenge in modern circuit designs, adding to the difficulties in mixed-cell-height placement. Existing MIA-aware detailed placement with single-row-height standard cells is insufficient for mixed-cell-height designs: 1) filler insertion, typically used to resolve MIA violations, might incur unaffordable area and wirelength overheads and 2) mixed-height-cell perturbation could cause severe inter-row MIA violations. This article addresses the mixed-cell-height detailed placement problem considering both intra- and inter-row MIA constraints. We first fix intrarow violations by clustering violating mixed-height cells of the same threshold voltage, and then perturb each cluster to obtain a desired cell permutation by applying an efficient, optimal dynamic-programming-based algorithm for a special case and Algorithm DLX for general ones, where a provably constant performance ratio for a mixed-cell-height reshaping problem can be achieved. With a network-flow-based formulation, remaining violating cells are placed in appropriate filler-insertion positions to fix cell violations and minimize area. After performing mixed-cell-height detailed placement, we finally fix inter-row violations by shifting violating cells in minimum displacement. Experimental results show that our algorithm can efficiently solve all MIA violations without any extra area overhead.
Keyword:
Reprint 's Address:
Source :
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS
ISSN: 0278-0070
Year: 2021
Issue: 10
Volume: 40
Page: 2128-2141
2 . 5 6 5
JCR@2021
2 . 7 0 0
JCR@2023
ESI Discipline: ENGINEERING;
ESI HC Threshold:105
JCR Journal Grade:3
CAS Journal Grade:3
Cited Count:
WoS CC Cited Count: 11
SCOPUS Cited Count: 11
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: