Indexed by:
Abstract:
ZnS/carbon nanocomposites have potential electrochemical applications due to their improved conductivity and more active sites through modification of the carbon materials. Herein, we report a facile method to synthesize the nanocomposites comprising ZnS nanoparticles and nitrogen-doped carbon (ZnS@NC). The inorganic-organic hybrid ZnS-amine material ZnS(ba) (ba = n-butylamine) is synthesized on a large scale by a reflux method, which effectively shortens the reaction time while maintaining the high yield compared with the solvothermal method. Then ZnS(ba) is used as precursor for obtaining ZnS@NC nanocomposites via a vacuum pyrolysis route, in which the content of carbon and nitrogen can be controlled by adjusting the pyrolysis temperature. Further, a series of ZnS-amine hybrid materials ZnS(ha), ZnS(en)(0.5) and ZnS(pda)(0.5) (ha = n-hexylamine; en = ethylenediamine; pda = 1,3-propanediamine) are synthesized and used as precursors for the preparation of ZnS@NC materials, indicating the universality of this method. Moreover, the as-synthesized ZnS@NC materials exhibit remarkable lithium storage performance with outstanding cycling stability, high-rate capability and remarkable pseudo-capacitance characteristics.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
RSC ADVANCES
ISSN: 2046-2069
Year: 2021
Issue: 53
Volume: 11
Page: 33344-33353
4 . 0 3 6
JCR@2021
3 . 9 0 0
JCR@2023
ESI Discipline: CHEMISTRY;
ESI HC Threshold:117
JCR Journal Grade:2
CAS Journal Grade:4
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: