Indexed by:
Abstract:
本发明公开了一种基于PCA和随机森林分类的入侵检测方法,其实现步骤为:(1)从入侵检测数据集中选取训练样本集和测试样本集;(2)通过PCA算法对训练样本集X进行特征降维处理,得到新的低维样本集合X’;(3)对于新的低维样本集合X’,通过给定随机森林中决策树的数量t,从低维样本集合X’中有放回地抽取N个子集,每颗决策树都对N个子集进行训练,最终得到一个随机森林分类器;(4)将测试样本集输入随机森林分类器,得到测试样本集的最终入侵检测结果。本发明使用先降维后分类的思想,对数据先进行特征降维然后再进行分类,与普通的基于机器学习入侵检测技术相比,本发明提出的入侵检测方法可有效提高检测的准确性。
Keyword:
Reprint 's Address:
Email:
Patent Info :
Type: 发明授权
Patent No.: CN201710590718.4
Filing Date: 2017/7/19
Publication Date: 2019/11/12
Pub. No.: CN107395590B
公开国别: CN
Applicants: 福州大学
Legal Status: 授权
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: