Indexed by:
Abstract:
本发明涉及一种基于K‑means聚类拟合的显著性检测优化方法,包括以下步骤:步骤S1:提取图像的场景GIST特征;步骤S2:提取图像的颜色直方图特征;步骤S3:根据场景GIST特征和颜色直方图特征计算图像间的相似性;步骤S4:根据图像间的相似性对图像集合进行K‑means聚类,分成k个相互独立的图像簇;步骤S5:计算每个图像簇的拟合模型;步骤S6:判断新的输入图像所属的图像簇,将该图像簇的拟合模型作用在输入图像的显著性图上进行优化。该方法适用于多种显著性检测算法的优化,优化效果明显。
Keyword:
Reprint 's Address:
Email:
Patent Info :
Type: 发明授权
Patent No.: CN201710522004.X
Filing Date: 2017/6/30
Publication Date: 2020/9/1
Pub. No.: CN107330431B
公开国别: CN
Applicants: 福州大学
Legal Status: 授权
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: