Indexed by:
Abstract:
本发明涉及一种基于机器学习的社交网络垃圾用户过滤方法,包括以下步骤:1、针对一社交网络,定义需要从社交网络的社交用户中提取的特征向量,构建一垃圾消息过滤规则集;2、从社交网络中取一定数量的社交用户作为训练样本,然后对各训练样本发布的社交消息进行特征提取,得到各训练样本的特征向量中除平均垃圾关键字得分之外的所有元素;3、根据垃圾消息过滤规则集,计算各训练样本的平均垃圾关键字得分,得到各训练样本完整的特征向量;4、将各训练样本的特征向量,输入支持向量机进行训练,得到垃圾用户过滤模型;5、利用垃圾用户过滤模型对待测用户进行检测,判断待测用户是否为垃圾用户。该方法有利于准确提取、过滤社交网络中的垃圾用户。
Reprint 's Address:
Patent Info :
Type: 发明授权
Patent No.: CN201410332643.6
Filing Date: 2014/7/14
Publication Date: 2017/7/4
Pub. No.: CN104090961B
公开国别: CN
Applicants: 福州大学
Legal Status: 授权
Affiliated Colleges: