Indexed by:
Abstract:
本发明涉及一种贝叶斯算法和MapReduce相结合的信任度量方法,包括以下步骤:S01:采用贝叶斯过滤算法对移动终端交互中产生的行为记录进行信任度评估,通过统计训练数据集中的先验概率,利用贝叶斯公式计算出其后验概率,选择最大后验概率作为行为记录的信任度;S02:运用带Dirichlet过程的贝叶斯推理算法对可信记录做概率分布评估,得到对移动终端的可信度预测;S03:采用信息增益算法实现特征值的选取。本发明借助云计算平台在信任度计算与存储过程中具有的高效性、安全性与中立性,保证数据的安全存储与高性能计算。
Keyword:
Reprint 's Address:
Email:
Patent Info :
Type: 发明授权
Patent No.: CN201310397770.X
Filing Date: 2013/9/4
Publication Date: 2015/6/3
Pub. No.: CN103455842B
公开国别: CN
Applicants: 福州大学
Legal Status: 未缴年费
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: