Indexed by:
Abstract:
无网格局部Petrov-Galerkin(MLPG)法被誉为是一种有发展前景的真正无网格方法,近年其理论和应用均得到较大发展。在MEMS(micro-electro-mechanical system)的建模与数值模拟研究中,大变形或大移动要充分予以考虑,无网格方法能在分析这类问题时显示出明显的优势。文中进一步发展MLPG法分析悬臂和两端固支微机电开关在非线性载荷作用下的非线性大变形问题,通过与有限元结果的比较,表明文中提出的大变形问题无网格局部Petrov-Galerkin法具有稳定性好、收敛快等优点。
Keyword:
Reprint 's Address:
Email:
Source :
机械强度
ISSN: 1001-9669
Year: 2010
Issue: 6
Page: 938-941
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count: -1
30 Days PV: 1
Affiliated Colleges: