Indexed by:
Abstract:
对粗糙集进行了相关研究,并提出了一种以粗糙集理论为基础的K-平均聚类算法,该算法以信息表中条件属性和决策属性的一致性原理为基础,应用粗糙集的属性约简算法消除冗余属性,利用各属性重要度确定其权值,在此基础上应用改进的K-平均算法进行聚类分析.该方法的优势在于消除了不重要的属性,赋予了各属性权值,使聚类更有效,更客观.实验结果表明,该方法是有效的.
Keyword:
Reprint 's Address:
Email:
Source :
武汉大学学报:工学版
ISSN: 1671-8844
Year: 2011
Issue: 2
Volume: 44
Page: 257-260
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count: -1
30 Days PV: 0
Affiliated Colleges: