Indexed by:
Abstract:
叶绿素a浓度是水质状况评价的一个重要指标,而遥感是大面积反演叶绿素a浓度的重要手段。由于采用基于经验模型的标准算法对二类水体叶绿素a浓度的反演值往往偏高,因此本文基于半分析模型GSM01(Garver-Siegel-Maritorena.01),在对模型参数进行调节的基础上,对东海2008年5月11日AquaMODIS、TerraMODIS、Sea.WiFS3种传感器各波段遥感反射率进行融合,来反演叶绿素a浓度,并将反演结果与自适应加权平均算法获得的叶绿素a浓度数据进行对比。结果表明,基于GSM01融合的多传感器叶绿素a浓度反演,拥有4个优势:(1)GSM01模型反演叶绿素a浓度值范围更符合实测结果,由于该模型考虑水体各组分的散射吸收特性对光谱反射率的影响,避免因高浓度悬浮物质影响造成的近岸水体叶绿素a浓度过高问题;(2)通过融合多传感器反射率数据,用于叶绿素a浓度反演的波段从6个增至18个,光谱信息变丰富,模型求解的自由度提高,叶绿素a浓度反演的精度提高。模型通过误差最小化准则,将不同传感器反演的差异降至最小,保证反演结果的空间连续性;(3)与自适应加权平均采用的融合策略不同,GSM01模型直接利用各传感器遥感反射率数据进行融合而不是针对叶绿素a浓度数据进行融合,避免了误差的传递;(4)GSM01模型可自由组合输入的反射率数据,具有更强的灵活性。
Keyword:
Reprint 's Address:
Email:
Source :
地球信息科学学报
ISSN: 1560-8999
Year: 2013
Issue: 6
Volume: 15
Page: 911-917
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count: -1
30 Days PV: 2
Affiliated Colleges: