Indexed by:
Abstract:
基于标签传播的社区发现算法(LPA)以其简单高效得到了广泛的研究,然而当社区结构模糊时,LPA得到的是一个单一的社区,这是无意义的.模块化标签传播算法(LPAm)则倾向于将网络划分为度数相近的社区且存在解极限问题.为此提出基于模块密度的标签传播(LPAd)算法,该算法通过对模块密度优化进行标签标记和传播,以避免过大社区的形成,且生成的社区满足Radicchi等人提出的弱社区定义.多个真实数据集和人工网络数据的实验结果表明,本文算法在不改变算法复杂度的情况下提高了所发现社区的质量,与现有的若干基于标签传播的社区发现算法相比,取得了改进的效果.
Keyword:
Reprint 's Address:
Email:
Source :
计算机系统应用
ISSN: 1003-3254
Year: 2015
Issue: 3
Volume: 24
Page: 176-182
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count: -1
30 Days PV: 1
Affiliated Colleges: