Indexed by:
Abstract:
针对阿尔兹海默症(AD)通常会导致海马体区域萎缩的现象,提出一种使用卷积神经网络(CNN)对脑部磁共振成像(MRI)的海马体区域进行AD识别的方法。测试数据来自ADNI数据库提供的188位患者和229位正常人的脑部MRI图像。首先,将所有脑图像进行颅骨剥离,并配准到标准模板;其次,使用线性回归进行脑部萎缩的年龄矫正;然后,经过预处理后,从每个对象的3D脑图像的海马体区域提取出多幅2.5D的图像;最后,使用CNN对这些图像进行训练和识别,将同一个对象的图像识别结果用于对该对象的联合诊断。通过多次十折交叉验证方式进行实验,实验结果表明所提方法的平均识另q准确率达到88.02%。与堆叠自动编码器(SAE)方法进行比较,比较结果表明,所提方法在仅使用Mm进行诊断的情况下效果比SAE方法有较大提高。
Keyword:
Reprint 's Address:
Email:
Source :
计算机应用
ISSN: 1001-9081
Year: 2017
Issue: 12
Volume: 37
Page: 3504-3508
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count: -1
30 Days PV: 0
Affiliated Colleges: