Indexed by:
Abstract:
自动图像标注是一个包含众多标签、多样特征的富有挑战性的研究问题,是新一代图像检索与图像理解的关键步骤.针对传统的基于浅层机器学习标注算法标注效率低下、难以处理复杂分类任务的问题,提出了基于栈式自动编码器(stacked auto-encoder,简称SAE)的自动图像标注算法,提升了标注效率和标注效果.主要针对图像标注数据不平衡问题,提出两种解决思路:对于标注模型,提出一种增强训练中低频标签的平衡栈式自动编码器(B-SAE),较好地改善了中低频标签的标注效果.并在该模型的基础上提出一种分组强化训练B-SAE子模型的鲁棒平衡栈式自动编码器算法(RB-SAE),提升了标注的稳定性,从而保证模型本身具有较强的处理不平衡数据的能力;对于标注过程,以未知图像作为出发点,首先构造未知图像的局部均衡数据集,并判定该图像的高低频属性以决定不同的标注过程,局部语义传播算法(SP)标注中低频图像,RB-SAE算法标注高频图像,形成属性判别的标注框架(ADA),保证了标注过程具有较强的应对不平衡数据的能力,从而提升整体图像标注效果.通过在3个公共数据集上进行实验验证,结果表明,该方法在许多指标上相比以往方法均有较大提高.
Keyword:
Reprint 's Address:
Email:
Source :
软件学报
ISSN: 1000-9825
Year: 2017
Issue: 7
Volume: 28
Page: 1862-1880
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count: -1
30 Days PV: 0
Affiliated Colleges: