Indexed by:
Abstract:
虫害检测算法的构建是耦合“地—天”特征的过程,是实现其遥感监测的重要保障。以福建省三明市、将乐县、沙县、南平市延平区等4个县(区、市)为试验区,收集182组马尾松毛虫害样本数据,随机划分为训练集与验证集,设置5次重复试验及1次指标筛除试验。结合马尾松毛虫危害下的寄主表征,获取松林叶面积指数LAI、叶面积指数标准误SE L、归一化差值植被指数NDVI、缨帽变换湿度轴WET及影像绿光波段B 2、红光波段B 3、近红外波段B 4等7个地面与遥感特征指标,建立其危害等级的Fisher判别分析与随机森林模型,从检测精度、Kappa系数、ROC曲线等角度综合比较两种算法的检测效果,并给予配对t检验。结果表明:7个指标均具备虫害响应能力,SEL和NDVI相对较弱;Fisher判别分析6次试验的虫害平均检测精度为73.26%,Kappa系数为0.631 9,而RF法则分别为79.30%,0.715 1,显著优于前者(p<0.05);RF法对无危害、轻度危害、中度危害3个虫害等级的检测精度、Kappa系数、AUC均显著高于Fisher判别分析(p<0.05),对于重度危害等级,Fisher判别分析则占优。总体而言,RF法对马尾松毛虫害的检测效果优于Fisher判别分析,但Fisher判别分析对重度危害等级有更高准确性且模型明确、易于推广,可综合应用两种算法开展虫害监测工作。该成果为马尾松毛虫害及其他森林病虫害的有效检测提供技术参考,奠定其遥感监测的基础。
Keyword:
Reprint 's Address:
Email:
Source :
光谱学与光谱分析
ISSN: 1000-0593
Year: 2018
Issue: 9
Volume: 38
Page: 2888-2896
0 . 4 3 4
JCR@2018
0 . 7 0 0
JCR@2023
ESI HC Threshold:209
JCR Journal Grade:4
CAS Journal Grade:4
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count: -1
30 Days PV: 9
Affiliated Colleges: