Indexed by:
Abstract:
虫害检测算法研究是开展虫害快速、准确监测,制定精准森防检疫措施的重要基础。以毛竹叶片为研究尺度,基于刚竹毒蛾危害下的寄主外部形态与内部生理现象总结,选择并实测叶损量LL、相对叶绿素含量RCC、相对含水量RWC、原始光谱的733.66~898.56nm值(ρ733.66~898.56)、一阶微分光谱的562.95~585.25nm值(ρ′562.95~585.25)与706.18~725.41nm值(ρ′706.18~725.41)等理化参数,随机划分实验组(63组)和验证组(37组)并设计5次重复实验;分别运用Fisher判别分析、BP神经网络、随机森林等三种方法建立刚竹毒蛾危害等级的检测模型,从检测精度、Kappa系数及R2等指标对模型的检测效果予以分析和比较。结果显示,Fisher判别分析、BP神经网络、随机森林的检测精度分别为69.19%,65.41%,83.78%,Kappa系数分别为0.5769,0.5324和0.7788,R2分别为0.7222,0.5826和0.8709,总体而言,三种方法均具备刚竹毒蛾危害的检测能力,随机森林的检测效果最优,Fisher判别分析次之,再次为BP神经网络;从分等级来看,随机森林的检测精度亦优于Fisher判别分析与BP神经网络,但3种方法对中度危害等级的检测精度均有所不足。该成果可为刚竹毒蛾危害及其他病虫害检测算法的选择提供参考,并为进一步建立冠层、遥感影像像元等尺度的虫害检测模型奠定基础。
Keyword:
Reprint 's Address:
Email:
Source :
光谱学与光谱分析
ISSN: 1000-0593
Year: 2019
Issue: 3
Volume: 39
Page: 857-864
0 . 4 5 2
JCR@2019
0 . 7 0 0
JCR@2023
ESI HC Threshold:184
JCR Journal Grade:4
CAS Journal Grade:4
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count: -1
30 Days PV: 8
Affiliated Colleges: