• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

陈媛 (陈媛.) [1] | 陈晓云 (陈晓云.) [2]

Indexed by:

CQVIP PKU CSCD

Abstract:

极限学习机(ELM)作为一种无监督分类方法,具有学习速度快、泛化性能高、逼近能力好的优点。随着无监督学习的发展,将ELM与自动编码器集成已成为无标签数据集提取特征的新视角,如极限学习机自动编码器(ELMAE)是一种无监督的神经网络,无需迭代即可找到代表原始样本和其学习过程的主要成分。其重建输入信号获取原始样本的主要特征,且考虑了原始数据的全局信息以避免信息的丢失,然而这类方法未考虑数据的固有流形结构即样本间的近邻结构关系。借鉴极限学习机自动编码器的思想,提出了一种基于流形的极限学习机自动编码器算法(M-ELM)。该算法是一种非线性无监督特征提取方法,结合流形学习保持数据的局部信息,且在特征提取过程中同时对相似度矩阵进行学习。通过在IRIS数据集、脑电数据集和基因表达数据集上进行实验,将该算法与其他无监督学习方法PCA、LPP、NPE、LE和ELM-AE算法经过k-means聚类后的准确率进行了比较,以表明该算法的有效性。

Keyword:

无监督学习 极限学习机 极限学习机自动编码器 流形学习 特征提取

Community:

  • [ 1 ] 福州大学数学与计算机科学学院,福州350116

Reprint 's Address:

Email:

Show more details

Related Keywords:

Related Article:

Source :

计算机工程与应用

ISSN: 1002-8331

Year: 2020

Issue: 17

Volume: 56

Page: 150-155

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count: -1

30 Days PV: 2

Affiliated Colleges:

Online/Total:104/9994037
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1