Indexed by:
Abstract:
针对入侵检测中少数类异常数据的检测精度较低的问题,提出基于支持向量聚类的不平衡数据无监督检测算法.方法采用支持向量聚类对所有未知样本进行聚类,根据不同类别样本内在属性的差异,用改进的重抽样方法选择样本,平衡数据集的分布,对新的数据集进行学习.经过KDD99的测试表明,该方法能有效检测出少数类样本.
Keyword:
Reprint 's Address:
Email:
Source :
福州大学学报(自然科学版)
ISSN: 1000-2243
CN: 35-1337/N
Year: 2013
Issue: 02
Volume: 41
Page: 171-177
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 5
Affiliated Colleges: