Indexed by:
Abstract:
针对高斯粒子滤波(GPF)在多峰高斯假设条件下不能满足贝叶斯估计精度的问题,提出一种基于粒子群优化的高斯粒子滤波算法(PSO-GPF).该算法用粒子群优化算法更新高斯建议分布的参数,解决粒子退化和多峰高斯下的粒子精度问题.同时,带压缩因子的粒子群优化算法能有效平衡粒子的全局探测与局部开采.实验结果表明,新算法的滤波精度比高斯粒子滤波精度平均可提高93.9%,具有更高的稳定性.
Keyword:
Reprint 's Address:
Email:
Source :
福州大学学报(自然科学版)
ISSN: 1000-2243
CN: 35-1337/N
Year: 2015
Issue: 01
Volume: 43
Page: 54-60
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: