Abstract:
由于建筑能耗因子间存在非线性和高度冗余特性,传统预测方法很难消除数据之间冗余和捕捉非线性特征,导致预测精度较低。为了提高建筑能耗预测精度,建立了一种基于KPCA-WLSSVM的建筑能耗预测模型。利用核主元分析(KPCA)对输入变量进行数据压缩,消除变量之间的相关性,简化模型结构;进一步采用加权最小二乘支持向量机(WLSSVM)方法建立建筑能耗预测模型,同时结合一种新型混沌粒子群-模拟退火混合优化(CPSO-SA)算法对模型参数进行优化,以提高模型的预测性能及泛化能力。通过将KPCA-WLSSVM模型方法应用于某公共建筑能耗的预测中,并与WLSSVM、LSSVM及RBFNN模型相比,实验结果表明...
Keyword:
Reprint 's Address:
Email:
Source :
江南大学学报(自然科学版)
Year: 2015
Issue: 06
Volume: 14
Page: 710-716
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: